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Abstract 

The exact intensity formula of the h-line profile from 
small crystallites has been obtained as the orienta- 
tional average of the diffraction intensity of the h 
plane given by Ino & Minami [Acta Cryst. (1979), 
A35, 163-170]. While the formula is expressed as a 
triple integral including a sine Fourier integral, it can 
be expressed asymptotically with respect to the crystal 
size according to the theorem of asymptotic 
expansion of a Fourier integral. Hence the profile can 
be estimated by the sum of terms of single-integral 
type. The first term is of the same type as Wilson's 
formula but it has been shown that second and third 
terms improve considerably the accuracy of the 
asymptotic estimation especially for a very small crys- 
tal. The h-line profile can be successfully calculated 
for quite a small crystal of any shape and any crystal 
system by the asymptotic formula, which can be com- 
puted as easily as Wilson's formula. 

1. Introduction 

The diffraction from the h plane of a single-crystal 
sample is concentrated into a small region of 
reciprocal space b near the reciprocal-lattice point h. 
The intensity profile from a powdered polycrystalline 
sample is given by averaging the intensity distribution. 
function lh(b) over all directions of vector b: 

lh(b) = ]" lh(b) d.Qb/4"n', (1) 

where b is the magnitude of vector b. 
The calculation of the profile was first treated by 

Laue (1926). He gave the intensity from a 

0108-7673/84/050538-07501.50 

parallelepiped crystal having Nj unit cells along the 
aj axis (j  = 1,2, 3) as follows: 

with 

/(b) = IF(b)12G(b), (2) 

G ( b ) =  ]2.[ [sin (rrNjbj)'~ 2 
(3) 

where F(b) is the structure factor and b is expressed 
as b =  blal* +b2a2* +b3a*, a~ being the reciprocal- 
unit-cell vectors. As an approximate function of lh(b) 
for a large crystal he adopted a Gaussian function: 

3 
Ih(b)~--lF(h) 2 [I N~ exp{-TrN~(bj-hj)2}, (4) 

j = l  

where 

h = hlal* + h2a* + h3a3* (h i ,  h2, h3 integers). (5) 

Instead of attempting the evaluation of integral (1), 
he approximated it by an integral over the tangent 
plane to the sphere with radius b at the point bh/Ihl: 

oo oo 

Ih(b) = ~ ~ In(b) db'l db'2/(47rb2), 
--00 --00 

(6) 

where (b'l, b~) are orthogonal coordinates on the 
tangent plane. Finally he derived the intensity profile 
formula as follows: 

Id  b ) ---- IF(h)I2 N, N2N3 

x exp {-¢r(b -Ihl)2/n2}/(4¢rb 2 Vcr/), 
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(7) 



T. INO AND N. MINAMI 539 

where V~ is the volume of the unit cell and 
3 

2 =  ~ {a.h/(Njlhl)}2. (8) 
j = l  

For spherical crystals with diameter D, Patterson 
(1939) showed In(b) to be proportional to 

IS(~DIh-hl)I ~, 
where 

S(u) = 3(sin u - u  cos u)/u 3 (9) 

and derived an exact formula by integrating (1) as 
follows: 

lh(b)oc Z(x_)-  Z(x+), (10) 

with 

Z(x)=x-4{(s in  x - x  cos x) 2+x 2 sin 2 x}, (11) 

where x_ = rrD(b -Ihl), x+ = zrD(b + Ihl). Later, War- 
ren (1978) derived exactly the same intensity formula 
as Patterson's by a different method. 

For a crystal of general shape Wilson (1962) gave 
h-line profile formula by using the tangent plane 
approximation by Laue as follows: 

r h 

lhW(b)- F(h)12 I Vh(r) cos {2~r(b-lhl)r}dr, (12) 
27rb 2 V~ 

0 

where Vh(r) is the volume common to the crystal and 
its ghost shifted a distance r in the h direction, and 
rh is the value of r for which Vh(r) vanishes. 

As mentioned above, the intensity profile has not 
been exactly calculated for the crystal of general 
shape except for a sphere. The tangent plane approxi- 
mation may be good as long as In(b) is concentrated 
at b = h, but for small crystallites, as the average is 
the case, the integral (1) cannot be approximated by 
the integral (6). In this paper the h-line profile for 
crystallites of general shape will be derived by an 
asymptotic expansion with respect to the crystal size. 
Then the validity of the asymptotic estimation will 
be examined. 

2. Exact calculation of h-line profile 

According to the theory by Ino & Minami (1979), the 
diffraction intensity from a small crystal with a par- 
ticular size and shape is properly expressed as a sum 
over the reciprocal-lattice vectors h: 

/(b) = ~  lh(b), (13) 
h 

lh(b) = (1 /V 2) F(b, h) 2 

xJ °//(r) exp [21ri(b- h)r] dr, (14) 

with 

F(b, h) = Z f~ (b) exp (27rihr~), (15) 
or 

where r~ andf~ are the position vector and the atomic 
scattering factor of the cah atom in the unit cell, 
respectively, and ~(r)  is the self-convolution of the 
shape function of the s(r), i.e. 

V(r) = j' s(r ')s(r '  +r) dr', (16) 

1 inside the crystal boundary 
s(r) = 0 outside the crystal boundary. (17) 

If a polycrystalline sample can be considered to 
consist of the crystals oriented at random, the h-line 
intensity profile lh(b) can be obtained by the integra- 
tion of (1). As far as the atomic scattering factors can 
be regarded as spherically symmetric, lh(b) can be 
expressed as 

lh(b) = (1/Vc )2IF( b, h)l  2 
x~ ~(r)  exp (-27rihr) sin (2"n'br)/(27rbr) dr. 

(18) 
In the case of a spherical crystal with diameter D, 

= - - - + -  (19) 
2D 2 ' 

where V, is the volume of the crystallite, and the 
intensity profile is given by an analytical formula 

( V t )  3D 
Ih(b)= -~ [F(b,h) 2167rh bV {G(x_)-G(x+)}, 

(20) 
where 

x-Z{l sin (2x) sin 2x] G(x) 
x 

which is equivalent to (11). 

(21) 

3. Asymptotic estimation of h-line profile 

Besides the crystal defined by s(r), let us consider a 
standard object with unit volume and with the shape 
similar to the crystal, and assume that the former 
crystal is p times as large as the object. Hereafter p 
will be referred to as the 'crystal size'. Let the function 
of the shape and its self-convolution for the object 
be tr and v, and we obtain relations between tr and 
s, and between v and ~ as follows: 

s(r)=tr(r/p) (22) 

and 

~(r)=p3v(r/p). (23) 

Substituting the v for ~ in (18) and introducing a 
new variable x = r/p, we obtain 

lh(b) = IF(b, h)12(v,/vc)(p3/vc) 

x / v(x) exp (-27rip h x) 
sin (2~pbx) 

27rpbx dx. (24) d 
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Effects of the shape and the size on the diffraction 
profile may be estimated by v(x) and p in (24), 
respectively. With such polar coordinates (x, 0, ~) 
that the polar axis is directed parallel to h, (24) is 
rewritten as 

2[V, \ _ - _ , , p 2  f 2: 
l h (b )=  F ( b , h )  tV-f)27rblhlVc dx d~ 

0 0 

x ~ dO Vh(xO¢) exp (-2~riplhlx cos 0) 

0 

×x  sin (27rpbx) sin 0, (25) 

where Vh(xO~) corresponds to the version of v(x) in 
(24). Using the relationship Vh(X, 7r-- 0, 7r + ~ )  = 
v~(xOq~) and introducing a variable sc = 
x ( b - I h  cos 0), we can transform (25) to the integral 
over (x(~) .  

(v) 
Ih( b ) = lF (  b' h)l~ 

: I I  x Gh(X, q~" p) dx dq~, (26) 
2rrblhl V, 

with 

Gh(x, q~;p)= ~ whEx, O(~,x), q~]sin(27rp~)d~, (27) 

where 

and 

wh(xO,~)= ½{vh(xO,~) + v,(x, O, ~ +,~)} (28) 

sc~ = x ( b ± l h  ). (29) 

By use of Heaviside's unit function H(sC), (27) can 
be further t ransformed as 

oc, 

Gh(x, q~" p) = J gh(x, q~; ~) sin (2rrp~) d~, 
- o o  

(30) with 
gh(x, q~" ~) = H(s c -  ¢_)H(sC+ - ¢)w~,[x, O(x, ~), q~]. 

(31) 

gh(x, ~ ; ~:) has singularities at ~: = ~:_ and ~: = ~+ corre- 
sponding to 0 -- 0 and 0 = rr and near each singularity 
it can be expressed as follows" 

near s c = ~_, 

gh = wh(xO~)H((- ~_) 
+(2)' /2aWh(xO~) 

ao ~-~-'/2H(¢-~-) 

1 a2Wh(xO¢) 
~xlhl : 0  I~- ¢- H(~:-~_) 

+ o (  so- so_l) ; (32) 

n e a r  ¢ = G ,  

gh = wh( xrrq~ ) H ( sC+ - ~ ) 

2 )l/2cgWh(X'n'qg) ~+_(ll/2H(~+_~ ) 
- ~[h[  aO 

I 

xhl 
___  a 2 w . ( x ~  )1~ + - ~: ln  ( ~:+ - ~:) 

002 

+o(l~+- ~1). (33) 

According to the theorem on Fourier integrals in § 4.3 
of the book by Lighthill (1958), Fourier sine trans- 
forms of type (27) or (30) can be asymptotically 
expanded with respect to the size parameter  p: 

1 
Gh = ~ p  { Wh(X0~0 ) COS 2"rrp~_ -- wh(xrrq~ ) COS 27rp~+} 

+ (27rp) 3/~ 

× ~OWh(X0~O) sin ( + 3 7 r )  
L 0-O \ 27rps¢- 4 

Owh(xrr¢)sin( 2 7 r p ' + a O  -437r)} 
1 1 { o2wh(xOq~) sin 2rrpsC_ 

(2 rrp) 2 xlh I 002 

02 Wh ( X ~'~ ) } 
-F sin 2rrp~+ +o(1/p2), (34) 002 

by use of the following formulas. 

H ( s  c -  so_) sin 2 rrpsC d~:-= cos (27rp~_)/(2~rp), 

H(~:+-  ~:) sin 2 rrp~: d~:= - c o s  (2rrp~+)/(2.rrp) 

f l~-- ~-11/2n(~ - ~-) sin 27rp¢ d¢ 

7r ~12 1 
= 2 (27rp)3/2 sin (27rp~:_ +3rr), 

f l(+- ~l'/2n(l~+ - ~) sin 27rp~: d~¢ 

q "/ '1/2 1 
---2 (2rrp) 3/2sin (27rps%-3 7r)' 

.[ ~:- sC-lH(s ¢ -  so_) sin 2rrp~: d~: 

= - s i n  (2.trp£_)/ (2~.p) 2, 

]so+ - sClH(~+ - ~) sin 2rrps ¢ d~ 

= - s i n  (2.rrp~+)/(2~.p) 2. 



T. INO AND N. MINAMI 541 

Since wh(xTrq~)= Wh(X0q~)-- Vh(X00), 
27r 2~r 

f 3Wh(X~q~) d~P=-- f Owh(xO~p) 30 
0 0 

2~r 

= _ f 0Vh(X0q~)00 dq~ 

0 

and 
2"n" 2"rr 

f O2wh(xTrq~) dqg- f 02Wh(XOCP) 002 

0 0 

2"n" 

= f 02Vh(X0(~)00 2 d~o. 

0 

Finally, (26) turns out to be 

lh(b)=lF(b'h)12 -~ 2~rbh Vc 

{ 1 1 ( 1 ) }  
X J l  "dr- (plhl),/------SJ2 ÷-p-~J3 + o  

with 

(35) 

x h 

J, = f Vh(X00){COS 27rpx(b - h ) 
0 

- cos  2~rpx(b +lh )} dx (35') 
x h 

,f ,  J2=~ ~i7~Vho(X){sin[2~'px(b-- h ) +3"rr] 

0 

+sin [27rpx(b + Ihl) dx (35") 

and 
x h 

1 f 1 Vhoo(X){sin2~rp(b--lhl)x J3 - 271" x 
0 

+ sin 2"n-p( b + Ihl)x} dx (35"') 

where xh is the value of x for which Vh(X00) vanishes 
and 

2~r 

f OVh(XO~o) d~o (36) 
Vho(X) = O0 27r' 

0 

2w 

f O2vh(xO~o) dq~ (37) 
vhoo(x) = 002 2"n'" 

0 

Equation (35) is an asymptotic expression with 
respect to the crystal size p and it turns out that 
integrals J~, -/2 and J3 contribute toward the intensity 

profile lh(b) with their weights proportional to 
1, 1/(plh]) I/2 and l/(plhl),  respectively. Hence, for a 
large crystallite whose p is large, one may approxi- 
mate lh(b) only by the first term of (35), but for a 
small crystallite whose p is small, the second term 
and third term should be taken into account. 

4. h-line profile for parallelepiped crystal 

Let us consider the parallelepiped crystals mentioned 
in § 1. The function ~(r )  in (23) is given as 

3 

~V(r) = Vc n (N~-  rj ), (38) 
j = l  

where 
3 

r =  ~ rjaj. 
j = l  

As derived in Appendix At  Vh(X00), Vho(X) and 
Vhoo(X) are given as follows: 

with 

with 

and 

3 

Vh(X00) = H (1- t j /3 j  x) (39) 
j = l  

t; = p~ Nj, and/3j = h a * / h ,  
3 

V.o(X)=-xvh(xO0) ~ qj 
j = l  

(40) 

{(2/~tjlaTI if h±a* (41) 
qJ = otherwise, 

= x Z tjl/3 l(l - t , , I / 3 , , I x ) ( 1  - t,I/3,1x) + x 2 Y, 
( jk l )  

(42) 

where Y~jkl) means a sum over (jkl)= (123), (231), 
(312), and Y are given as follows: 

2 (1-- tl /31X)t2t3{ m23 sin-l m23 } 
7r (A22A33) I /2  "~- IB . 

for/31 # 0,/32 =/33 = 0. 

Y= tit2 sgn (/31/32)Ai2, 

for /31#O, f12#O,/33=O, (43) 

E tjtk(1 -- t,I/3,1x) sgn (/3j/3k)Ajk, 
( j k l )  

for/3t # 0 . / 3 2 # 0 . / 3 3 #  0. 

t Appendices A and B have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
39428 (6 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CHI 2HU, England. 
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with 

and 

Ajk * * = aj ak -- flj~k (44) 

B:h,l(IhlV~). (45) 

sity. Fig. 1 shows the plots of 

bNI,,( b )/IF( b, h)l~( V,I V~ ) 
versus  ba for the asymptotic estimation and the exact 
calculation, and their differences multiplied by five. 

We can derive the h-line profile of  small 
parallelepiped crystallites by substituting (39), (40), 
(42) into (35'), (35"), (35"') and integrating them over 
x from 0 to x,, which is the smallest value in (tl[/3,1)-', 

and (t31/331)-I 
For example, let us calculate the h-line profile 

(h,-> h2 >- h 3 -  0) for a cubic crystal (lattice constant 
a) with the shape of a cube whose edges are parallel 
to the axes of  the crystal. Since a* = a j / a  2, tj = a, 
f l j =  h j / ( h a ) ,  Xh = h / h l ,  where 

then 

h=(h~+h~+h~) 1/2, 

3 

vh(xO0) = l-I (1-hjx /h) ,  
j = l  

(46) 

(47) 

0.4 

0"3 

0-2 

0-1 

0 

0.04 

0.02 

0 

-0-02 

. . . . . . . .  I h=(1 0 O) 

,/..,.o°"" -,,, ,  

• "" / ' ,  "x 

\ / % .o" 

- 4 x ( 1 - x ) ,  for h ,>0 ,  h2=h3=0,  

Vho(X)= " t - 2 x (  1 - h l x / h ) ( l - h 2 x / h ) ,  (48) 

/ for h~ -> h2 > 0, h 3 = 0, 

[0, for h~ - h2-  > h 3 >  0 

and 

I (h~ +h2)x/h-3h,h2x2/h 2, 

vhoo(x) = J for hi -> h 2 >  O, h 3 = O, 
/ m(h, +h2+h3)x/h (49) 

m _ 3(h~ h2 + h2h3 + h3ht ) x2 /  h 2 

I . + 6 h ] h 2 h 3 x 3 / h  3, forht>_h2>_h3>O; 

J~ and -/3 can be integrated analytically, while -/2 can 
be easily computed by a numerical integration. The 
intensities of h = (100), (110) and (111) for a cubic 
crystal with cubic shape containing 100 unit cells were 
computed by the asymptotic formulas. In order to 
examine the validity of the asymptotic forms, the 
exact intensities expressed by a double integral in 
Appendix B* were computed by using the IBM4300 
computer of the Computer Center of  Kinki Univer- 

* See deposition footnote. 

0.5 1.0 ba 1.5 

0.4 

0.3 

0-2 

0.1 

h=(1 1 O) ........ i 
.., ---. 

.~ --'-- III 
~ , ,  -- EXACT 

0"02 f ,,,,-'-,,,, 

o I---._ -/ . 2~T...'---':~...---:~---~ .... 

I _..~.~.,,~. ~;...~ ~ :~ 
-0"02 t 

1 "0 1 "5 ba 

0.4 

0'3 

0-2 

0-1 

0 

. . . . . . . .  I 
h=(1 1 1) . . . .  III ~ - -  EXACT 

0.02 ] 

0 ["~"~. ~ . - " ' ° "  . . . . . . . . . . . . . . . . . . . . . .  
I "" "~:..--::_.-'Z'..~.]..--J:"-" ~" 
I 

1.5 2.0 ba 

Fig .  I.  P l o t s  o f  b[hlIh(b)/[F(b , h ) [ 2 ( V , / V c )  versus ba f o r  a cubic 
crystal with cubic shape containing 100 cells. 
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Their three kinds of asymptotic estimations, (I) 
including only the Ji term, (II) including Ji and J2 
terms and (III) including the three terms in (35), are 
plotted by dotted, broken and dot-dash lines, respec- 
tively, and the exact calculation by a solid line. In 
the case of the (100)-line profile, the estimation (I) 
does not give a good approximation near the peak, 
but the J2 term improves the peak height and the 
estimation (III) gives almost the exact intensity. For 
the ( l l0)  profile the second term of the asymptotic 
expansion advances the approximation similarly to 
the case of the (100) line, but the third term is ineffec- 
tive. For the (l 1 l) profile, since the second term 
vanishes and the third term is a small value, then the 
first term gives a good approximation. 

5. Conclusion 

Converting x and Vh(XO~) in (35')-(35'") into r and 
°//'h(r0~), respectively, according to (23), we obtain a 
formula which does not contain explicitly the size 
parameter p: 

with 

and 

where 

l 
lh( b)=  IF( b, h)122 ~rb Ihl v~ 

x{l,+12+13+o(V,)}, (50) 

r h 

I, = ]" Vh(r)Ecos {2rr (b-  h )r} 
0 

- c o s  {2~(b+lhllr}]dr, (50') 
r h 

1 I Vho(r)~ . 
12- 2lhl,/2 r---~TT--ts,n {2~r(b- h )r +317"} 

o 

+sin {27r(b + [hi)r-  3zr}] dr, (50") 

r h 

1 I Vn°°(r)[sin {27r(b- hl)r } 
I3 - 2"n" h r 

0 

+sin {27r(b +lhl)r}] dr, (50'") 

Vn(r) = °//'h (r00), (51) 
2 7 r  

Vho(r)= I 0~n(r0tP)00 dtp/2-rr, (52) 

0 
2rr 

I 02~h(r0q~) 
Vhoo(r)= 002 dg,/2zr. (53) 

o 

For large crystallites Ih(b) can be well approximated 

by the first term only of (50), but for small crystallites 
more terms should be taken into account as men- 
tioned in § 3. 

6. Discuss ion 

Instead of l(b) in (13), which is the most proper 
expression for a bounded small crystal, let us consider 
the term /~(b) previously discussed (Ino & Minami 
1979) as follows: 

with 

le(b) = E l~,(b) 
h 

l ~ , ( b )  : (1/Vc)2/lF(h)l 2 

× / °V(r) exp [2zri(b- h)r] dr. 
411  

J 
(54) 

Since (54) is obtained by replacing F(b, h) in (14) by 
F(h), the asymptotic expansion of the h-line profile 
can be readily derived by the substitution of F(h) 
into F(b, h) in (50): 

1 
l~,(b)= F(h)22zrb'hlV~ +I2+I3+o(V,)}. (55) 

Substituting l~,(b) into In(b) of (6), one can derive 
the tangent plane approximation of I~(b)" 

l~,(b)- F(h)12 J °//'(r) exp (-27rihr) 
47rb 2 V 2 

Since 

~ exp (2zribr) db'l db~ = exp (2zribr'3)8(r'i)8(r~), 
where (r'i, r'2) are coordinates on the tangent plane 
and r[ is a coordinate parallel to the h direction, it 
can be proved that (56) is identical with the Wilson 
formula (12). Compared with (55), his formula (12) 
appears to be a modification of the first term in (55), 
such that the term l/(27rblh[) in (55) is changed into 
l /2~b 2 and the term cos{2~r(b+lhl)r} in (50') 

0.4 

0.3 

0.2 

0.1 

0 
0.5 

h=(1 0 O) ,~-~ 
/," 

/ /  
ft" 

r, 

1.0 ba 1.5 

Fig. 2. Plots of  blhilh(b)/[F(h)]2(V,/Vc) versus ba for the first term 
of  (55) (dotted line), Wilson's formula (broken line) and the 
exact intensity (solid line) from the same crystal as used in Fig. i. 
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vanishes. Fig. 2 shows a comparison of the first term 
of (55) with Wilson's formula. They agree well with 
each other, especially for b > Ihl. Consequently, Wil- 
son's formula is almost the same as the first term of 
the asymptotic expression of lh(b) in (55), which is 
not as correct as lh(b) of (13), and hence Wilson's 
formula gives a poor approximation as the crystal 
size decreases. 

For a spherical crystallite, since Vh(r)= 
V,{1-3r/2D+½(r/D)3},(19),and Vho(r)= Vhoo(r)= 
0, (50) agrees with the exact form (20). As shown for 
a cubic crystallite in Fig. 1, the asymptotic expression 
(50) gives an excellent agreement with the exact 

intensity. It can be concluded that the intensity profile 
can be exactly calculated by the asymptotic expansion 
including three single integrals, which can be calcu- 
lated as easily as the Wilson's formula. 
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Abstract 
Integrated direct methods-  isomorphous probability 
distributions [Hauptman (1982). Acta Cryst. A38, 
289-294] are interpreted in terms of the familiar 
parameters of the isomorphous replacement method, 
the diffraction ratio and the differences in the diffrac- 
tion intensities of a native protein and its heavy-atom 
derivative. The analysis shows that the reliability of 
the phase estimates is a function of the degree of 
heavy-atom substitution in the derivative. It clearly 
pinpoints the most favorable conditions for retrieving 
phase information from the intensity data of an 
isomorphous pair of structures. Finally, it provides a 
means to determine a priori the overall reliability of 
the phase estimates and to design the calculations 
accordingly. 

1. Introduction 
Crystallographic studies of molecular structures have 
been traditionally divided into two groups, those of 
macromolecules and those of small molecules. 
Although the central problem of any crystal structure 
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determination, the so-called phase problem, is shared 
by both groups, the techniques developed in the pur- 
suit of a solution to this problem have followed sig- 
nificantly different courses. Bearing in mind the 
intrinsic differences between the two groups, it has 
nevertheless been felt, in the last few years, that the 
expertise acquired in both fields, when properly 
integrated, could strengthen the present methods of 
structure determination, whether applied to small or 
large molecules. The theoretical basis of integrated 
direct methods- isomorphous replacement tech- 
niques has been introduced recently (Hauptman, 
1982). The distributions, although presented in a form 
suitable for computation, are rather complex and 
impermeable to straightforward interpretation in 
terms of the diffraction experiment performed. In the 
present paper we wish to show how a form of the 
distributions, in terms of the experimental param- 
eters, can be obtained easily through simple mathe- 
matical manipulations. The gains from such an exer- 
cise are twofold. Not only can we acquire a better 
understanding of the behavior and scope of the distri- 
butions but we can also gain valuable information on 
how to improve the experiment. 
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